

1 **How Fishing Cats *Prionailurus viverrinus* fish: Describing a felid's strategy to hunt aquatic
2 prey**

3 *Divyajyoti Ganguly AND Tiasa Adhya

4 *Department of Zoology, Maulana Azad College, Calcutta University, 8, Rafi Ahmed Kidwai Rd,
5 Taltala, Kolkata, West Bengal 700013(DG).*

6 *Centre for Conservation of Natural Resources, The University of Trans-disciplinary Health
7 Sciences and Technology, 74/2, Post Attur via Yelahanka, Jarakabande Kaval, Bengaluru,
8 Karnataka 560064 (TA).*

9 *The Fishing Cat Project, Small Wild Cat Conservation Foundation, 90 Rincon Rd, Corrales,
10 NM,87048-7619USA(TA).*

11 *Correspondent: ganguly.divyajyoti@gmail.com

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38 Hunting strategies are key to carnivore survival ([Krebs and Davies 2009](#); [Kamil et al.](#)
39 [2012](#); [Michalko and Pekar 2016](#)). Fishing Cat's (*Prionailurus viverrinus*) persistence in the
40 'semi-aquatic niche' ([Kitchener et al. 2010](#)) despite felids being terrestrial carnivores in general
41 (>95%) ([Hunter 2019](#)) suggests the evolution of a successful hunting strategy. Its morphological
42 adaptations further suggest selection for hunting in wetlands. What energy conserving strategies
43 did the Fishing Cat borrow from its family and how were these adapted to optimize energy
44 gained from hunting fish, its primary prey? We attempt to answer this by analyzing 197 video
45 footages collected opportunistically from a participatory science initiative conducted over 2.5
46 years. We found that the felid switches between stationary and active modes of searching for
47 prey depending on the depth of water and the corresponding loss of body heat/energy. For
48 example, diving in deeper waters requires the submergence of the upper portions of the body and
49 loss of more body heat/energy. Our analysis shows that the cat spent much of its time (~52%)
50 sitting and waiting for prey (fish) to come nearer and then took limited attempts to dive into
51 deeper water (2.78%). We suggest that this is a strategy to optimize the net energy gain. In
52 shallow waters where the cat could forage without submerging the upper body it adopted a
53 predominantly active mode of hunting (~96%) to flush out prey. Thus, prominent hunting
54 strategies in the small cat lineage like 'sit-and-wait' and 'active foraging' is adapted to hunt in
55 the water. We recorded a 60% hunting success in deeper waters but did not detect a successful
56 hunt in shallow waters due to the low sample size of data from shallow water hunting. The major
57 caveat in our study is the post-hoc analysis of opportunistically collected data as opposed to data
58 derived from a structured design with predefined objectives. With more sampling from various
59 seasons and landscapes, finer details can be explored which would have conservation
60 implications. For example, we would expect variations in 'attempts to hunt' during cold and

61 warm seasons because heat loss might be less of a challenge in the latter. Quantifying ‘attempts
62 to hunt’ and ‘successful hunts’ across seasons could help focus management interventions to
63 minimize negative interactions between fish cultivators and Fishing Cat. The strictly nocturnal
64 activity of fishing cat as demonstrated in our study could be a strategy taken by the cat to avoid
65 humans. Our approach of using participatory-science is relevant for conducting research on
66 mammal behavior in human dominated landscapes.

67

68 Keywords: camera-trap, ethogram, felids, Fishing Cat, hunting, participatory-science

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86 Successful hunting strategies allow the persistence of efficient predators through natural
87 selection ([Krebs and Davies 2009](#); [Kamil et al. 2012](#); [Michalko and Pekar 2016](#)). The global
88 carnivore guild exhibits a diversity of such hunting strategies that optimize prey capture while
89 overcoming foraging constraints ([Hayward et al. 2006](#); [Carbone et al. 2007](#); [Williams et al.](#)
90 [2014](#); [Rizzuto et al. 2018](#)). For example, some members of Canidae hunt in groups to subdue
91 larger prey by coordinating a prolonged chase in open areas ([Kruuk and Turner 1967](#); [Murray et](#)
92 [al. 1995](#); [Padilla and Hilton 2015](#)). In contrast, Felidae mostly has solitary hunters that ‘stalk’ to
93 reduce distance to prey before a successful ambush ([Carbone et al. 2007](#); [Sunquist and Sunquist](#)
94 [2013](#)). They do this with the help of cover in their immediate surroundings ([Kruuk and Turner](#)
95 [1967](#); [Elliot et al. 1977](#); [Corbett 1979](#); [Thiel 2011](#)). With the exceptions of Cheetah (*Acinonyx*
96 *jubatus*) ([Sunquist and Sunquist 2013](#)) and Snow Leopard (*Panthera uncia*) ([Sunquist and](#)
97 [Sunquist 2017](#)), felids do not engage in long chases.
98 A brief chase is present in some large felids while others hunt by pouncing or with a short rush
99 ([Kruuk and Turner 1967](#); [Sunquist and Sunquist 2017](#)). Large felids in general hunt prey similar
100 to their body size ([Carbone et al. 2007](#); [Sunquist and Sunquist 2017](#)). Chase is still less significant
101 in small felid (<25 kg) hunting strategies ([Table 1](#)) including in the larger and heavier ones (15-
102 25 kg) that can opportunistically take prey similar to their body size ([Carbone et al.](#)
103 [2007](#); [Sunquist and Sunquist 2017](#); [Hunter 2019](#)). Their diet is primarily composed of much
104 smaller prey such as rodents, lagomorphs, birds, reptiles and invertebrates ([Sunquist and](#)
105 [Sunquist 2017](#); [Hunter 2019](#)) that require lesser handling time, i.e., less energy ([Carbone et al.](#)
106 [2007](#)). Hence, capturing prey through short bursts of chase or by concentrating efforts in a final
107 attempt to hunt such as through leap/dash/pounce is common ([Table 1](#)). This counters the greater
108 amount of energy spent in searching and procuring smaller prey by small carnivores ([Carbone et](#)

109 [al. 2007;Rizzuto et al. 2018](#)). In addition, they lose more body heat (energy) due to a greater
110 surface area/body mass ratio ([Tracy 1977](#)).

111
112 Small felids have evolved different hunting strategies depending on the prey taken. For
113 instance, small mammals like rodents and hares are ambushed by sitting and waiting near
114 burrows or along trails frequented by prey or even by digging at their burrows ([Sunquist and](#)
115 [Sunquist 2017](#)). Birds on the ground are either flushed out from vegetation or stalked upon to
116 reduce distance ([Olbricht and Sliwa 1997;Sunquist and Sunquist 2017](#)). Arboreal primates are
117 hunted by climbing on trees and scaring them to lower branches and then to the ground as seen in
118 Ocelot (*Leopardus pardalis*) ([Bianchi and Mendes 2007](#)) whereas Margay (*Leopardus wiedii*)
119 uses vocal mimicry to lure prey ([de Oliveira Calleia and Gordo 2009](#)). [Kitchener et al. \(2010\)](#)
120 sequentially divide a typical felid hunt into ambush, detecting prey, stalking and running,
121 catching, killing, processing and eating. While ambush, detecting prey and stalking are typically
122 low-cost activities, running and catching are associated with higher costs ([Williams et al. 2014](#)).
123 The cost of killing, processing and eating differs with the type and size of prey. Small rodents or
124 birds can be easily subdued and consumed whole while large prey like large birds are required to
125 be processed by removal of feathers before eating ([Sunquist and Sunquist 2017](#)).

126
127 Fishing Cat (*Prionailurus viverrinus*) and Flat-headed Cat (*Prionailurus planiceps*) are
128 exceptional because of their choice of aquatic prey ([Kitchener et al. 2010](#)) as against terrestrial
129 prey taken by most felids. Further, morphological adaptations such as semi-retractile claws to
130 grip slippery aquatic prey and a double-coated fur to prevent the body from getting wet suggest
131 strong selection for hunting in wetlands ([Hunter 2019](#)). However, dentition in Fishing Cat

132 suggests a more eclectic diet when compared to Flat-headed Cat's ([Kitchener et al. 2010](#);[Hunter](#)
133 [2019](#)). The muscular build of Fishing Cat is suitable for hunting down similar sized terrestrial
134 prey ([Sunquist and Sunquist 2017](#);[Hunter 2019](#)). Despite a broad dietary spectrum, fish is the
135 major dietary component ([Haque and Vijayan 1993](#);[Cutter 2015](#);[Hunter 2019](#)). Examining the
136 hunting strategy of the cat could provide insight on why such a preference could have evolved.
137 The elusive nature of the cat however is an impediment for studying their behavior in the wild
138 ([Sunquist and Sunquist 2017](#)). Only a few observations on their hunting exist ([Prater](#)
139 [1965](#);[Sunquist and Sunquist 2017](#);[Hunter 2019](#)). Technological advances such as motion
140 detecting camera traps have however facilitated non-invasive studies on their ecology ([Nair](#)
141 [2012](#);[Das et al. 2017](#);[Malla 2016](#);[Malla et al. 2019](#)). But it is difficult to conduct such studies in
142 human dominated landscapes due to the issues of theft and requirement of greater manpower to
143 prevent the same.

144

145 Here, we used data collected through a participatory-science initiative. Such initiatives
146 are targeted at achieving answers to real world questions under limited resources, in a cost-
147 effective way through a partnership between volunteers and scientists where volunteers
148 contribute data and/or assist with its analysis ([Miller-Rushing et al. 2012](#);[Lawson et al. 2015](#)).
149 Such initiatives find use in a wide variety of wildlife disciplines. For example, ornithology has
150 benefited the most from citizen science initiatives with data on relative abundance and
151 distribution of bird species ([Lawson et al. 2015](#)). Participatory-science has also found use in
152 studies on wildlife management ([van Vliet et al. 2018](#)), land-use change ([Johansson and](#)
153 [Isgrén 2017](#)), wildlife monitoring ([de Mattos Vieira et al. 2015](#)), and wildlife disease surveillance
154 ([Lawson et al. 2015](#)).

155 We engaged residents sharing space with Fishing Cat in documenting and monitoring the
156 cats in their backyard through a camera trap exercise ([http://thelastwilderness.org/know-thy-
157 neighbours-the-spectacular-fishing-cat/](http://thelastwilderness.org/know-thy-neighbours-the-spectacular-fishing-cat/)). We used opportunistically collected camera-trap data of
158 over 2.5 years from this program along with field observations. All the behavior types from the
159 Fishing Cat footages were first identified and used in ethogram construction. An ethogram is a
160 formal description in the form of a table of all behavior types observed in a species or of
161 particular functional classes of behavior([McDonnell and Poulin 2002](#)).

162

163 The major objectives of our study were to:

164
165 (a) describe major behavioral activities of Fishing Cat around waterbodies and channels through
166 ethogram
167
168 (b) examine activity budget in order to describe the hunting strategy of Fishing Cat
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

192 **MATERIALS AND METHODS**

193 Study area.— Our study area consists of 3 sites, the Howrah district in the lower
194 Gangetic floodplains of West Bengal and two coastal wetlands in the Mahanadi floodplains
195 along the Eastern coast - Paradip and Chilika (Fig. 1).

196 The Howrah district ($22^{\circ}27'40.66''N$, $88^{\circ}0'32.71''E$) lies in the lower Gangetic
197 floodplains and is drained by the Hooghly and the Rupnarayan rivers. Our study was conducted
198 in fragmented marshy patches of Howrah district interspersed with croplands, small scale
199 aquaculture, human settlements and industrial complexes. Human density of Howrah district is
200 also highest among all sites and due to the sub-urban nature of the populace, human activity is
201 high till 10 pm.

202 In Paradip ($20^{\circ}18'50.63''N$, $86^{\circ}36'45.49''E$) data was collected from a marshy area of 9
203 sq. km inside the Paradeep Phosphates Limited campus. Small-scale aquaculture ponds
204 intersperse the marshes. Fishing activity by humans take place during day-time. After dark,
205 human activity is minimized since the area is accessible to campus residents only.

206 The study site in Chilika ($19^{\circ}51'39.66''N$, $85^{\circ}25'32.95''E$) located along the lake's north
207 east sector constitutes coastal wetlands formed by the Mahanadi floodplains in the Eastern
208 coast and has a contiguous marshland of 115 sq. km., crisscrossed by canals. Here local
209 fishermen catch wild fish during the day or anchor their boat in water channels at night after
210 laying nets and/or fish-baskets. The area is not inhabited by humans and all human activity stops
211 save for travelling fishing boats early morning. Human activity and presence is minimal in
212 Chilika when compared to Howrah and Paradip.

213
214 *Data collection.*— We initiated a participatory-science initiative in the study sites
215 among interested and enthusiastic members of the local community who were given camera traps

216 to monitor Fishing Cat in their neighborhood. The initiative was named ‘Know Thy Neighbour’.
217 20 camera traps (14 Cover Illuminator 9 and 6 Browning IR) were deployed opportunistically
218 over 2.5 years starting from November 2016 across the different study sites. Camera traps were
219 deployed to maximize the probability of capturing Fishing Cat. We consulted local people to
220 decide where to deploy the camera traps. As suggested by them we searched for probable sites to
221 place camera traps along shallow ponds or water channels. All camera trap deployment sites
222 were chosen after locating scats and/or tracks of felids. They were set on video mode and were
223 active from 5:30 p.m. - 6:00 a.m. Each trained volunteer picked up traps early morning and
224 repositioned them at the same location at night to reduce chances of misplacement/theft. We
225 assumed that we would not fail to miss fishing cat activity when camera traps were non-active
226 since Fishing Cats are primarily nocturnal ([Hunter 2019](#)) and villagers mostly reported seeing
227 them after dark.

228 *Data analysis.*— We collected over 200 camera trap video footages from the participatory
229 science initiative to analyze hunting behavior of Fishing Cat. All videos were analyzed by the
230 first author to avoid introducing observer bias. Consecutive videos from the same camera trap on
231 the same night which were taken less than a minute apart were considered as single data, as we
232 assumed lack of independence between closely occurring activities. ‘Behavior States’ were first
233 identified which represents behavioral patterns of relatively long duration ([Martin and Bateson](#)
234 [1993](#)). These were further divided into ‘behavior sub-states’. Behavioral patterns of relatively
235 short duration were classified as Events ([Martin and Bateson 1993](#)). We calculated the
236 proportion of time spent performing each State and the frequency of each Event using an
237 ethogram.

238 To examine activity pattern, videos (n=98) were selected such that they differed by at
239 least 30 minutes to ensure independence between data points. Such videos were then used to
240 generate line graphs to understand peak activity pattern of Fishing Cat. If two separate
241 individuals were detected in the videos, these were considered independent behavioural events
242 and analysed as two different samples.

243 In addition to these, any visible social behavior involving interactions between two or
244 more individuals was also noted.

245 In total, we analyzed 139.92 minutes from 197 camera trap video footages constituting
246 198 datapoints from all three study sites combined.

247

248

249

250

251

252

253

254

255

256

257

258

259

260

285 emergent vegetation formed on banks presumably to catch fish entrapped in 'dhauris' or bamboo
286 fish-baskets set by artisanal fishermen.

287
288 *Stalking*.—‘Approaching’ is occasionally followed by ‘stalking’ (4.05%). When prey is
289 detected, it became alert and stalked with sight and ears focused in prey’s direction. While
290 stalking, the cat either a) kept still and waited for prey to swim within striking distance
291 (‘Stationary Stalking’), or, b) advanced closer on ground to reach within striking distance
292 (‘Mobile Stalking’). In doing so floating vegetation might have provided some concealment to
293 the cat.

294 *Attacking*.— At striking distance the fishing cat plunged/dived (depending on depth)
295 into water (n=5) with forelimbs stretched followed by its head to catch prey. If the attack was
296 unsuccessful, the cat immediately came out of water, shook off excess water from the body and
297 in might take position immediately at a different spot.

298

304 *Stalking*.— The cat stalked (3.68%) by keeping still for prey to come within striking
305 distance, i.e., it only employed 'Stationary Stalking'.

306 *Attacking*.— The cat pounced (n=6) after prey either post stalking or immediately on
307 detecting movements while in ‘Active Searching’ mode. We did not record a successful attempt.

308

309 *Eating and Killing*

310 In a successful attempt(n=3), the cat grabs hold of the prey and emerges out of water onto
311 land. Small prey got consumed quickly and wholly along the bank while keeping vigilant.
312 However, large prey was dragged away from the water body as was observed in the field when a
313 snake-head presumably around 2 kilograms in weight was caught by a female Fishing Cat and
314 dragged into the nearby reeds. According to observations in the field, the cat consumed the flesh
315 of larger fish while the head, midrib, intestines and egg-sac are left behind.

Hunting Success

Overall, we recorded a naive hunting success rate of 27.27% (i.e., 3 successful attempts out of 11 events). Frequency of attempt to hunt were recorded directly from camera trap records and inferred from videos where the cat had fish-in-mouth. We assumed that an event of fish-in-mouth must have been preceded by a successful hunting attempt. ‘Attempt to hunt’ in deeper water was 2.78% and the same in shallow water was found to be 33.33%. Hunting success in deeper water was 60% (i.e., 3 successful hunts out of 5 attempts). No successful hunt was recorded from shallow water.

324

325 We found very little proportion of swimming behavior (0.35%).

328 Multiple individuals were found to use the same resource patch and were also found to
329 patrol the same camera trap site in the same night. Individuals were also found to spray
330 pheromones along vegetation, or, prominent structures like a stack of hay near the waterbody.

331

332 Cats engaged in ‘Self-Grooming’ sometimes (i.e., 1.25% of the time). Self-grooming is a
333 maintenance behavior after feeding ([Rochlitz 2014](#)).

334

335 We also recorded instances of social interactions between fishing cat individuals. In one
336 such instance, a male and a female were observed walking a trail, one behind another, along a
337 pond ([Supplementary Data SD 16](#)). In another instance, two individuals were observed
338 seemingly to communicate vocally by the side of a pond ([Supplementary Data SD 14](#)). A mother
339 with two sub-adult kittens was also observed to interact in a series of video clips while foraging
340 in shallow wetlands ([Supplementary Data SD 15](#)).

341

342 Nocturnal activity pattern of the fishing cat showed a gradual shift towards midnight with
343 increasing levels of human presence in the area. In Howrah district, the area with most human
344 presence and activity, Fishing Cat hunting times peak between 12 p.m. - 4 a.m. (higher peak;
345 n=37; [Fig. 4a](#)). Paradip area with intermediate human presence, showed Fishing Cat activity
346 peaking between 10-12 p.m. (n=4) and 2-4 a.m. (n=5) ([Fig. 4b](#)) and in Chilika area with the least
347 amount of human presence, activity peaked between 6-8 p.m. (n=8) and 10-12 p.m. (n=7) ([Fig.](#)
348 [4c](#)). All three areas combined, Fishing Cat activity peaked between 12 p.m.- 6 a.m. (n=59; [Fig.](#)
349 [4d](#)).

350

351
352
353
354
355
356
357
358
359
360
361
362
363
364

365
366
367
368
369
370

371 DISCUSSIONS

372

373 Most of Fishing Cat's foraging time was spent in searching for prey (89.86%) in and
374 around resource patches. While searching for prey in deeper waters which required submergence
375 of the upper body, the cat alternated between mobile (37.94%) and stationary searching modes
376 (51.65%). When no prey was detected the cat shifted to mobile searching again. In the event of
377 an unsuccessful hunt, Fishing Cat came out of the waterbody, shook off the excess water and
378 took position immediately at a different spot. Sometimes it also returned to the same spot. These
379 findings are similar to an anecdote from Keoladeo Ghana Bird Sanctuary where it was observed
380 to wait along the water's edge concentrating for signs of prey and was found to change positions
381 roughly every 15 minutes ([Sunquist and Sunquist, 2017](#)). In contrast, our study shows that it
382 employs a different strategy in shallow waters that did not require the upper portion of the body
383 to get wet. Here, it deployed an active mode of searching for prey, occasionally pawing the
384 waters to flush them out. This suggests that the cat switches from a combination of stationary-
385 and-mobile mode of searching for prey in deeper waters to a more mobile and active mode of
386 hunting in shallow waters in response to the differing needs to conserve energy.

387

388 Contrary to terrestrial foragers, aquatic foragers face additional physiological constraints
389 ([Rosen et al. 2007](#)). For example, semi-aquatic foragers such as otter, muskrat, platypus lose
390 body heat while foraging in water ([Grant and Dawson 1978](#); [Sherer and Wunder 1979](#); [MacArthur](#)
391 [1984](#); [Carss 1995](#); [Kruuk 2006](#)). Further, predator avoidance strategies of aquatic prey like fish

392 (Katzir and Camhi 1993; Harvey and Nakamoto 2013) must be accounted for during a successful
393 hunt. Hence, a successful hunting strategy must compensate for energy loss while optimizing
394 energy gain. For example, our data shows that the cat took measured attempts to hunt in deeper
395 waters, i.e., plunge/dive into water with outstretched forelimbs to catch prey. The ‘attempt to
396 hunt’ in deeper waters was found to be as low as 2.75%. This might be a strategy to maximize
397 chances of prey capture while minimizing energy loss since each attempt to hunt leads to energy
398 loss and too many attempts may alert the prey. The cat was found to be successful 60% of the
399 time it attempted to hunt in deeper waters. We did not record a successful hunt from shallow
400 waters but do not imply that Fishing Cat hunts more successfully in deeper waters. The findings
401 are rather an artefact of the low-sample size of data from shallow water hunting. Irrespective of
402 this, the chances of offsetting the high cost associated with attempting to hunt is variable and
403 thus strategies to conserve energy must evolve.

404

405 Felids are known to mitigate high hunting costs by reducing energy loss in other stages of
406 hunting, such as during pre-kill stages (Williams et al. 2014). The pre-kill stages constitute
407 efforts to detect prey by searching and then approaching/stalking to reduce distance to prey after
408 detection. While the ‘sit-and-wait’ search approach conserves energy, moderate energy might be
409 spent in actively searching for prey. Upon detecting prey, stalking is used selectively to reduce
410 distance to prey and increase chances of a successful hunt and in itself causes low energy loss.
411 The kill stage (attempt to hunt) incurs a high cost in deeper water as against a relatively moderate
412 cost in shallow water. Post-kill stages of fish consumption include subduing prey, processing,
413 consuming and digesting. After subduing prey, some energy is spent in dragging a big fish (1 – 2
414 kg) as was interpreted from a field observation by one of the authors and from online repository

415 (Bk Jeong 2017). Smaller prey may be consumed immediately next to the waterbody as was
416 observed in camera traps. However, fish once caught are easy to subdue as against terrestrial
417 prey (Sunquist and Sunquist 2017). Additionally, there is minimal cost of processing hunted fish
418 since scales are mostly excreted out along with scats. More importantly, fish protein is easily
419 digestible despite having high biological value (Vladau et al. 2008; Yilmaz et al. 2018). Thus, in
420 deeper waters, the high cost of hunting is offset by adopting energy-conserving pre-kill stages,
421 economic attempts to hunt and finally by successfully hunting highly-nutritious feed. In shallow
422 waters, more time is spent in actively searching for food which would probably increase the
423 chances of finding one and once a fish is successfully hunted, it could outweigh the energy spent
424 in actively searching for food. This perhaps serves to answer why Fishing Cat prefers fish over
425 rodents, which provide maximum metabolizable energy to small felids in general (Haque and
426 Vijayan 1993; Mukherjee et al. 2004; Hunter 2019). Thus, while the ‘sit-and-wait’
427 (Supplementary Data SD 7) and ‘active foraging’ strategy (Supplementary Data SD 9) from the
428 small cat lineage forms the backbone of Fishing Cat’s hunting strategy, its morphological
429 adaptations to hunt prey in water further enhances the success of this strategy. Such adaptations
430 are common among members of the carnivore guild that exhibit convergent evolution to forage
431 in the ‘semi-aquatic niche’ (Hunter 2019).

432

433 In addition, we recorded scent marking and faecal deposition, which are known territory
434 marking behaviors in felids (Brown and Bradshaw 2014; Burgos et al. 2018). We also recorded
435 sniffing behavior near resource patches. This is interesting as the strength of the odor in male cat
436 pheromone communicates the presence of high quality resource patches which is an attractant for
437 potential mates (Brown and Bradshaw 2014) whereas sniffing helps in sensing the presence of

438 other individuals as well as in gathering information on food resources ([Geertsema 1984](#); [Brown](#)
439 [and Bradshaw 2014](#)). However, multiple individuals were also recorded to use the same site in
440 the same night in three instances. This could be because of the relatedness of these individuals.
441 While captive studies indicate possible male parental care ([Rijssdijk 2011](#); Castaneda, [Cincinnati
442 Zoo and Botanical Garden, Cincinnati, United States of America], personal communication,
443 [December, 2019]) our data also shows sub-adults hunting in the presence of the mother. Thus,
444 despite being solitary hunters, related individuals could be using the same resource patch,
445 probably because of high density of prey, which is apparent from the use of such wetlands for
446 fishing/pisciculture by humans.

447

448 The strictly nocturnal activity of fishing cat in our study area could be attributed to two
449 reasons: a) the shift in activity pattern with intensifying levels of human presence could have to
450 do with avoidance of humans, much like how it adjusts to daytime hunting in order to co-exist
451 with larger competitors like Tiger and Leopard ([Nair 2012](#)) b) its crepuscular and nocturnal
452 activity could also be attributed to activity spikes in fish, its primary prey ([Carss 1995](#); [Banerjee
453 2018](#)).

454

455 The major caveat in our study is the post-hoc analysis of opportunistically collected data
456 as opposed to data derived from a structured design with predefined objectives. It is unlikely that
457 the major conclusions of the study will vary, nonetheless, more sampling from various seasons
458 and landscapes will reveal finer details which could have ecological and conservation
459 implications, the latter is particularly relevant in human dominated landscapes. For example, we
460 would expect variations in ‘attempts to hunt’ during cold and warm seasons because heat loss

461 might be less of a challenge in the latter. Locals also report greater fish loss during summer
462 months when water levels in ponds decrease and hypoxic conditions prevail. Hence, quantifying
463 ‘attempts to hunt’ and ‘successful hunts’ across seasons could help focus management
464 interventions to minimize negative interactions between fish cultivators and Fishing Cat.

465

466 Finally, prey is central to predator ecology. Analyzing aspects of fish behavior with
467 respect to hunting by Fishing Cat will thus add a vital dimension. For example, anecdotal
468 accounts suggest that the cat taps the surface of the water to attract fish. Moreover, adult Fishing
469 Cat use their paws to feel for fish in muddy waters and in a captive facility, a blind Fishing Cat
470 was seen to feel around for food with his feet before plunging his head into the water to retrieve
471 the food (Buck [Aspinall Foundation, Lympne, United Kingdom], personal communication,
472 [July, 2011])). Additionally, hydrophytic vegetation provides refuge and congregation sites for
473 fish ([Romare and Hansson 2003](#); [Sohel and Lindstrom 2015](#)). Predatory fishes frequent
474 hydrophytic vegetation in search of prey ([O’Hara 2012](#); [Ren et al. 2019](#)). Therefore, the presence
475 of such vegetation might be an important cue for hunting in both deeper and shallow waters.
476 Future studies which consider avoidance strategies of fish could significantly enhance our
477 knowledge on its hunting strategy.

478

479 Despite its caveats, the study is exemplary in demonstrating how by-catch data from
480 participatory-science initiatives could reveal hitherto unknown aspects of behavioral ecology
481 while also successfully circumventing the problems of equipment theft and need of greater
482 manpower to work in human dominated landscapes. Furthermore, it reveals how Fishing Cat
483 adapts to heavy human presence by shifting its foraging time to a chiefly nocturnal practice. The

484 cat could well be taking advantage of human-used fishing gears like bamboo fish-baskets which
485 have unidirectional valves through which fish enters and gets trapped as they were found to
486 perch on beds of dried emergent vegetation formed on banks along which the baskets were
487 deployed in ‘anticipation of prey’. Although we did not record Fishing Cat taking fish from the
488 baskets, locals reported that both Fishing Cat and Otter take the entrapped fish. How piscivorous
489 mammals take advantage of human-used gears requires further exploration as the strategy they
490 deploy gives them access to easy food but also incites negative interactions with fishermen.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

ACKNOWLEDGEMENT

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

SUPPLEMENTARY DATA

525

Supplementary Data SD 1.—A video showing Fishing Cat fast-walking along waterbody

526

Supplementary Data SD 2.—A video showing Fishing Cat slow-walking and searching along

527

waterbody

528

Supplementary Data SD 3.—A video showing Fishing Cat switching between mobile

529

(walking, approaching) and stationary (standing) searching modes along waterbody

530 **Supplementary Data SD 4.**—A video showing Fishing Cat sniffing and approaching towards
531 edge of waterbody followed by employing stationary searching

532 **Supplementary Data SD 5.**—A video showing Fishing Cat approaching waterbody edge

533 **Supplementary Data SD 6.**—A video showing Fishing Cat employing mobile stalking along
534 waterbody

535 **Supplementary Data SD 7.**—A video showing Fishing Cat employing stationary searching
536 (sitting), followed by stationary stalking along waterbody, followed by attacking (misses the
537 catch), pheromone spraying and taking position again at another spot

538 **Supplementary Data SD 8.**—A video showing Fishing Cat subduing and eating small fish
539 along waterbody

540 **Supplementary Data SD 9.**—A video showing Fishing Cat employing active search in shallow
541 water

542 **Supplementary Data SD 10.**—A video showing Fishing Cat engage in self-grooming along
543 waterbody

544 **Supplementary Data SD 11.**—A video showing Fishing Cat swimming out of frame into
545 waterbody

546 **Supplementary Data SD 12.**—A video showing Fishing Cat sniffing and depositing faeces
547 along water canal

548 **Supplementary Data SD 13.**—A video showing Fishing Cat yawning along waterbody

549 **Supplementary Data SD 14.**—A video showing two Fishing Cats seemingly communicating
550 along waterbody

551 **Supplementary Data SD 15.**—A video showing two sub-adult Fishing Cats employing active
552 search in shallow water as the mother watches over from some distance

553 **Supplementary Data SD 16.**—A video showing a male and a female Fishing Cat walking
554 along waterbody together

555

556 **LITERATURE CITED**

557

558 Bahaa-el-din, L., Henschel, P., Butynski, T.M., Macdonald, D.W., Mills, D., Slotow, R. and
559 Hunter, L., 2015. The African golden cat *Caracal aurata*: Africa's least-known felid.
560 *Mammal review*, 45(1), pp.63-77.

561 Banerjee, S. 2018. Interactions between wild carnivores and local residents in two districts of
562 rural Bengal in the lower Gangetic floodplains. M.S. thesis, BharatiyaVidyapeeth
563 (Deemed to be University), Pune.

564

565 Bianchi, R.D.C. and Mendes, S.L., 2007. Ocelot (*Leopardus pardalis*) predation on primates in
566 Caratinga Biological Station, southeast Brazil. *American Journal of Primatology: Official*
567 *Journal of the American Society of Primatologists*, 69(10), pp.1173-1178.

568

569 Bk Jeong. 2017. ARKive video Fishing Cat. https://www.youtube.com/watch?v=yuLMV1_-OPM.

571

572 Branch, L.C., 1995. Observations of predation by pumas and Geoffroy's cats on the plains
573 vizcacha in semi-arid scrub of central Argentina. *Mammalia*, 59(1), pp.152-155.

574

575 Brown, S.L. and Bradshaw, J.W., 2014. Communication in the domestic cat: within-and
576 between-species. Pp. 37-61 in *The domestic cat: the biology of its behavior* (D.C.
577 Turner, P. Bateson, and P.P.G. Bateson, eds.). Cambridge University Press.
578

579 Burgos, T., Virgós, E., Valero, E.S., Arenas-Rojas, R., Rodríguez-Siles, J. and Recio, M.R.,
580 2019. Prey density determines the faecal-marking behavior of a solitary predator, the
581 Iberian lynx (*Lynx pardinus*). *Ethology Ecology & Evolution*, 31(3), pp.219-230.
582

583 Carbone, C., Teacher, A. and Rowcliffe, J.M., 2007. The costs of carnivory. *PLoS biology*, 5(2),
584 p.e22.
585

586 Cars, D., 1995. Foraging behavior and feeding ecology of the otter *Lutra lutra*: a selective
587 review. *Hystrix, the Italian Journal of Mammalogy*, 7(1-2).
588

589 Corbett, L.K., 1979. Feeding ecology and social organization of wildcats (*Felis silvestris*) and
590 domestic cats (*Felis catus*) in Scotland (Doctoral dissertation, University of Aberdeen).
591

592 Cutter, P., 2015. Fishing cat ecology: food habits, home ranges, habitat use and mortality in a
593 human-dominated landscape around Khao Sam Roi Yot, Peninsular Thailand.
594

595 Das S. K., Saha R., Mukherjee S., Danda A. & Borah J. 2017. First estimates of fishing cat
596 abundance and density in Lothian Wildlife Sanctuary, Sundarbans, India. *Cat News* 66,
597 25-27.

598

599 deMattos Vieira, M.A.R., von Muhlen, E.M. and Shepard Jr, G.H., 2015. Participatory
600 monitoring and management of subsistence hunting in the Piagaçu-Purus reserve, Brazil.
601 *Conservation and Society*, 13(3), pp.254-264.

602

603 de Oliveira Calleia, F., Rohe, F. and Gordo, M., 2009. Hunting strategy of the margay
604 (*Leoparduswiedii*) to attract the wild pied tamarin (*Saguinus bicolor*). *Neotropical*
605 *Primates*, 16(1), pp.32-35.

606

607 Elliott, J.P., Cowan, I.M. and Holling, C.S., 1977. Prey capture by the African lion. *Canadian*
608 *Journal of Zoology*, 55(11), pp.1811-1828.

609

610 Funny Kitten Videos. 2014. Jungle cat and the other inhabitants of the world 2014.
611 <https://www.youtube.com/watch?v=IMX3xH-ZRw4>.

612

613 Geertsema, A.A., 1984. Aspects of the ecology of the serval *Leptailurus serval* in the
614 Ngorongoro Crater, Tanzania. *Netherlands Journal of Zoology*, 35(4), pp.527-610.

615

616 Grant, T.R. and Dawson, T.J., 1978. Temperature regulation in the platypus, *Ornithorhynchus*
617 *anatinus*: production and loss of metabolic heat in air and water. *Physiological Zoology*,
618 51(4), pp.315-332.

619

620 Haque, N.M. and Vijayan, V., 1993. Food habits of the fishing cat *Felis viverrina* in Keoladeo
621 National Park, Bharatpur, Rajasthan. *Journal of the Bombay Natural History Society*, 90,
622 pp.498-500.

623

624 Harvey, B.C. and Nakamoto, R.J., 2013. Seasonal and among-stream variation in predator
625 encounter rates for fish prey. *Transactions of the American Fisheries Society*, 142(3),
626 pp.621-627.

627

628 Hayward, M.W., Hofmeyr, M., O'brien, J. and Kerley, G.I.H., 2006. Prey preferences of the
629 cheetah (*Acinonyx jubatus*)(Felidae: Carnivora): morphological limitations or the need to
630 capture rapidly consumable prey before kleptoparasites arrive?.*Journal of Zoology*,
631 270(4), pp.615-627.

632

633 Hunter, L., 2019. *Carnivores of the world* (Vol. 117). Princeton University Press.

634

635 Johansson, E.L. and Isgren, E., 2017. Local perceptions of land-use change: using participatory
636 art to reveal direct and indirect socioenvironmental effects of land acquisitions in
637 Kilombero Valley, Tanzania. *Ecology and Society*, 22(1).

638

639 Kamil, A.C., Krebs, J.R. and Pulliam, H.R. eds., 2012. *Foraging behavior*. Springer Science &
640 Business Media.

641

642 Katzir, G. and Camhi, J.M., 1993. Escape response of black mollies (*Poecilia sphenops*) to
643 predatory dives of a pied kingfisher (*Ceryle rudis*). *Copeia*, 1993(2), pp.549-553.

644 Kitchener, A.C., Van Valkenburgh, B. and Yamaguchi, N., 2010. Felid form and function. Pp
645 83-106 in *Biology and conservation of wild felids* (Vol. 2) (D.Macdonald and
646 A.Loveridge, eds.). Oxford University Press.

647

648 Krebs, J.R. and Davies, N.B. eds., 2009. *Behavioral ecology: an evolutionary approach*. John
649 Wiley & Sons.

650

651 Kruuk, H. and Turner, M., 1967. Comparative notes on predation by lion, leopard, cheetah and
652 wild dog in the Serengeti area, East Africa. *Mammalia*, 31(1), pp.1-27.

653

654 Kruuk, H. and Kruuk, S.P.O.N.H., 2006. *Otters: ecology, behavior and conservation*. Oxford
655 University Press.

656

657 Lawson, B., Petrovan, S.O. and Cunningham, A.A., 2015. Citizen science and wildlife disease
658 surveillance. *Eco Health*, 12(4), pp.693-702.

659

660 MacArthur, R.A., 1984. Aquatic thermoregulation in the muskrat (*Ondatra zibethicus*): energy
661 demands of swimming and diving. *Canadian Journal of Zoology*, 62(2), pp.241-248.

662

663 McDonnell, S.M. and Poulin, A., 2002. Equid play ethogram. *Applied Animal Behavior Science*,
664 78(2-4), pp.263-290.

665

666 Malla G., 2016. Ecology and conservation of Fishing Cat in Godavari mangroves of Andhra
667 Pradesh. Proceedings of the First International Fishing Cat Conservation Symposium,
668 Nepal, 25–29 November (Appel, A. and Duckworth, J. W. eds.). Fishing Cat Working
669 Group, Bad Marienberg, Germany, and Saltford, Bristol, United Kingdom.

670

671 Malla, G., Ray, P., Rajasekar, P. S., & Sivakumar, K. 2019. Notes on the fishing cats of the
672 Godavari delta, Andhra Pradesh, India. *Cat News*, 70, 18-20.

673 Martin, P., Bateson, P.P.G. and Bateson, P., 1993. *Measuring behavior: an introductory guide*.
674 Cambridge University Press.

675

676 McHuron, E.A., Robinson, P.W., Simmons, S.E., Kuhn, C.E., Fowler, M. and Costa, D.P., 2016.
677 Foraging strategies of a generalist marine predator inhabiting a dynamic environment.
678 *Oecologia*, 182(4), pp.995-1005.

679

680 Michalko, R. and Pekár, S., 2016. Different hunting strategies of generalist predators result in
681 functional differences. *Oecologia*, 181(4), pp.1187-1197.

682

683 Miller-Rushing, A., Primack, R. and Bonney, R., 2012. The history of public participation in
684 ecological research. *Frontiers in Ecology and the Environment*, 10(6), pp.285-290.

685

686 Mukherjee, S., Goyal, S.P., Johnsingh, A.J.T. and Pitman, M.L., 2004. The importance of
687 rodents in the diet of jungle cat (*Felis chaus*), caracal (*Caracal caracal*) and golden

688 jackal (*Canis aureus*) in Sariska Tiger Reserve, Rajasthan, India. *Journal of Zoology*,
689 262(4), pp.405-411.

690

691 Murray, D.L., Boutin, S., O'Donoghue, M. and Nams, V.O., 1995. Hunting behavior of a
692 sympatric felid and canid in relation to vegetative cover. *Animal Behavior*, 50(5),
693 pp.1203-1210.

694

695 Nair, S. 2012. Habitat use and abundance of fishing cats (*Prionailurus viverrinus*) from
696 camera-trap surveys used for monitoring tigers in the Terai region of India. M.S.
697 thesis, submitted to the University of Otago, New Zealand.

698

699 Ogurlu, I., Gundogdu, E. and CeyhunYildirim, I., 2010. Population status of jungle cat
700 (*Felis chaus*) in Egirdir lake, Turkey. *Journal of environmental biology*, 31(1),
701 p.179.

702

703 Olbricht, G.E.A. and Sliwa, A., 1997. In situ and ex situ observations and management of
704 Black-footed cats *Felis nigripes*. *International zoo yearbook*, 35(1), pp.81-89.

705

706 Padilla, L.R. and Hilton, C.D., 2015. Canidae. In *Fowler's Zoo and Wild Animal Medicine*,
707 Volume 8 (pp. 457-467). WB Saunders.

708

709 Prater, S.H., 1965. *The book of Indian animals* (Vol. 2). Bombay Natural History Society.

710

711 O'Hara, K., 2012. Fish Behavior and the Management of Freshwater Fisheries. Pp. 496-522

712 in *The behavior of teleost fishes* (T.J., Pitcher, ed.). Springer Science & Business

713 Media.

714

715 Ren, Y., Xiong, M., Yu, J., Li, W., Li, B., Liu, J. and Zhang, T., 2019. Effects of artificial

716 submersed vegetation on consumption and growth of mandarin fish *Siniperca*

717 *chuatsi* (Basilewsky) foraging on live prey. *Journal of Freshwater Ecology*, 34(1),

718 pp.433-444.

719

720 Rijsdijk, Y. 2011. A Fishing Cat Family Diary. *Feline Conservation Federation*. Volume

721 55, Issue 4.

722

723 Rizzuto, M., Carbone, C. and Pawar, S., 2018. Foraging constraints reverse the scaling of

724 activity time in carnivores. *Nature ecology & evolution*, 2(2), p.247.

725

726 Rochlitz, I., 2014. Feline welfare issues. Pp. 131-154 in *The domestic cat: the biology of its*

727 *behavior* (D.C. Turner, P. Bateson, and P.P.G. Bateson, eds.). Cambridge University

728 Press.

729

730

731

732 Romare, P. and Hansson, L.A., 2003. A behavioral cascade: top-predator induced behavioral
733 shifts in planktivorous fish and zooplankton. *Limnology and Oceanography*, 48(5),
734 pp.1956-1964.

735

736 Rosen, D.A., Winship, A.J. and Hoopes, L.A., 2007. Thermal and digestive constraints to
737 foraging behavior in marine mammals. *Philosophical Transactions of the Royal
738 Society B: Biological Sciences*, 362(1487), pp.2151-2168.

739 Ross, S., Barashkova, A., Kirilyuk, V., and Naidenko, S., 2019. The behavior and ecology
740 of the manul. *Cat News*, Special Issue Nr 13 Spring 2019, pp. 09-13.

741

742 Sherer, J. and Wunder, B.A., 1979. Thermoregulation of a semi-aquatic mammal, the
743 muskrat, in air and water. *Acta Theriologica*, 24, pp.249-256.

744

745 Sohel, S. and Lindström, K., 2015. Algal Turbidity Reduces Risk Assessment Ability of the
746 Three-Spined Stickleback. *Ethology*, 121(6), pp.548-555.

747

748 Stanton, L.A., Sullivan, M.S. and Fazio, J.M., 2015. A standardized ethogram for the
749 felidae: A tool for behavioral researchers. *Applied Animal Behavior Science*, 173,
750 pp.3-16.

751

752 Sunquist, M. and Sunquist, F, 2013. Pp. 283–301 in *Carnivore behavior, ecology, and
753 evolution* (J.L., Gittleman, ed.). Springer Science & Business Media.

754

755 Sunquist, M. and Sunquist, F., 2017. *Wild cats of the world*. University of chicago press.

756

757 Taylor, R.E., Forman, D.W., Greig, C. and Parry, G.S., 2010. Otters, the unexpected

758 entomophage?.*Biologist*, 57(3).

759

760 Thiel, C., 2011. Ecology and population status of the Serval *Leptailurus serval* (Schreber,

761 1776) in Zambia. *Ph. D. dissertation*.

762

763 Tracy, C.R., 1977. Minimum size of mammalian homeotherms: role of the thermal

764 environment. *Science*, 198(4321), pp.1034-1035.

765

766

767 vanVliet, N., L'haridon, L., Gomez, J., Vanegas, L., Sandrin, F. and Nasi, R., 2018. The use

768 of traditional ecological knowledge in the context of participatory wildlife

769 management: Examples from indigenous communities in Puerto Nariño, Amazonas-

770 Colombia. In *Ethnozoology* (pp. 497-512). Academic Press.

771

772 Vladau, V., Bud, I. and Stefan, R., 2008. Nutritive value of fish meat comparative to some

773 animal's meat. *Bulletin of University of Agricultural Sciences and Veterinary*

774 *Medicine Cluj-Napoca. Animal Science and Biotechnologies*, 65(1-2).

775

776 Williams, T.M., Wolfe, L., Davis, T., Kendall, T., Richter, B., Wang, Y., Bryce, C., Elkaim,

777 G.H. and Wilmers, C.C., 2014. Instantaneous energetics of puma kills reveal

778 advantage of felid sneak attacks. *Science*, 346(6205), pp.81-85.

779 Yilmaz, E., Aydin, M., Yildirim, A. and Şahin, P., 2018. The Importance of Consumption of

780 Fish Meat in Early Childhood Period in Terms of Healthy Development. *Süleyman*

781 *Demirel Üniversitesi Eğirdir Su Ürünleri Fakültesi Dergisi*, 14(4), pp.357-364.

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813 **Table 1.**—Weight, prey size and hunting technique in small felids

Serial Number	Species	Weight Range (in Kg)	Main Prey	Hunting Technique	Reference
1	Black-footed Cat (<i>Felis nigripes</i>)	1-2.5	rodents, small birds, insects	(1)‘Fast-hunt’: moves swiftly in ‘bounds’ to flush out prey from cover and attacks surprised prey; (2)‘Slow-hunt’: moves steadily, ‘winding’ through grass, moving head from side-to-side and ears in all directions to detect prey, stalks close and attacks in a final rush or jump; (3)‘Sit-down’ hunt: ‘sits with drawn up	Olbricht and Sliwa 1997 , Sunquist and Sunquist 2017 , IUCN/SSC Cat Specialist Group (http://www.catsg.org/)

				front paws' by rodent dens for upto an hour, sometimes with closed eyes yet constantly moving ears and attacks in a final rush consisting of one or more 'fast jumps out of the crouch'	
2	Pallas' Cat (<i>Otocolobus manul</i>)	2-5	Small lagomorphs and rodents	(1)'stalking': creeps slowly, stealthily around cover to locate, move close to and pounce on prey (2)'moving and flushing': walks quickly through long grass and undergrowth to flush rodents, small birds, grasshoppers and pounces in attack (3)'waiting in ambush': waits outside active burrow for prey to emerge	IUCN/SSC Cat Specialist Group (http://www.catsg.org/), Ross et al. 2019
3	Leopard Cat	1.6-8	Rodents, lizards,	Actively searches and	Sunquist and Sunquist 2017 , IUCN/SSC Cat Specialist

	(<i>Prionailurus bengalensis</i>)		amphibians, small birds, insects	‘freezes’, crouches and ‘darts forward’ staying low on detecting prey	<u>Group</u> (http://www.catsg.org/)
4	Geoffroy’s Cat (<i>Leopardus geoffroyi</i>)	3-6	Rodents	Upon prey detection hides behind cover and closes in by crouching and sneaking from cover to cover and waits in ambush for prey, next it inches closer in a ‘low jerky posture’ and ‘springs forward’ at striking distance	<u>Branch 1995, IUCN/SSC Cat Specialist Group</u> (http://www.catsg.org/)
5	Andean mountain Cat (<i>Leopardus jacobita</i>)	4-6	Small mammals, birds, lizards	Actively searches among and under rocks and stalks once detected	<u>Sunquist and Sunquist 2017, IUCN/SSC Cat Specialist Group</u> (http://www.catsg.org/)
6	European Wildcat (<i>Felis silvestris silvestris</i>)	3-8	Rodents, lagomorphs	stalks by lying in wait near prey trails or burrows and leaps at striking distance	<u>Corbett 1979, IUCN/SSC Cat Specialist Group</u> (http://www.catsg.org/)
7	Jungle Cat (<i>Felis chaus</i>)	5-9	Rodents, birds	Stalks and ambushes followed by a leap or pounce;	<u>Sunquist and Sunquist 2017, Ogurlu et al. 2010, IUCN/SSC Cat Specialist Group</u>

				sometimes digs to retrieve prey hidden in burrows	http://www.catsg.org/ , Funny Kitten Videos 2014
			fish	Scoops up fish from bank or jumps/dives after fish from bank of water, may also enter shallow water in search of prey	
8	Canada Lynx (<i>Lynx canadensis</i>)	8-12	Hares, squirrels, grouse	Uses ambush pounce	Sunquist and Sunquist 2017, IUCN/SSC Cat Specialist Group (http://www.catsg.org/)
9	African Golden Cat (<i>Caracal aurata</i>)	7-16	Rodents, shrews, birds	Uses stalk and rush upon prey detection	Bahaa-el-din et al. 2014, IUCN/SSC Cat Specialist Group (http://www.catsg.org/)
10	Caracal (<i>Caracal caracal</i>)	6-18	Birds, rodents, hares	Stalks to get close, waits in ambush (sometimes for long) and dashes or leaps in attack	Sunquist and Sunquist 2017, IUCN/SSC Cat Specialist Group (http://www.catsg.org/)
11	Serval (<i>Leptailurus serval</i>)	7-18	Rodents, small birds, lizards, snakes, frogs, insects	Uses 'high pounce' on unsuspecting prey to 'stun' them	Sunquist and Sunquist 2017, Geertsema 1984, IUCN/SSC Cat Specialist Group (http://www.catsg.org/)
12	Bobcat (<i>Lynx rufus</i>)	6-20	Lagomorphs, rodents	Uses a patient sit-and-wait at prey trails/burrows; patrols trails looking and listening,	Sunquist and Sunquist 2017, IUCN/SSC Cat Specialist Group (http://www.catsg.org/)

				leaps in pursuit or crouches and slinks forward on detecting prey (abandons chase after short burst of speed)
13	Eurasian Lynx (<i>Lynx</i> <i>lynx</i>)	17-25	Lagomorphs, rodents, birds	Uses stalk and ambush by creeping close to prey and jumping (rarely pursues in chase after a miss); waits for prey in ambush by trails

814
815
816

817
818

819

820
821
822

823
824
825
826
827
828
829
830

831
832
833
834
835
836
837
838
839
840

841 **Table 2.**—Ethogram of Fishing Cat's behaviour around resource patches (water body),
842 definitions from Stanton et al. 2015

Behavior	Description	Supplementary Data
Slow Walking	Forward locomotion along water body at a normal gait with occasional scanning of water body	Supplementary Data SD 2
Fast Walking	Forward locomotion along water body at a swift gait, faster than slow walking	Supplementary Data SD 1
Approaching	Slow and forward locomotion, sometimes in a slightly crouched position, directed towards water body with eyes and ears moving and scanning the water	Supplementary Data SD 5
Standing	All four legs extended and paws touching ground along or within water	Supplementary Data SD 3
Sitting	Hind legs flexed and resting on the ground, front legs extended, body straight or lying on the ground against on side of body with head raised, along water	Supplementary Data SD 7
Crouching	Body close to the ground, whereby all the legs remain bent and belly touching or slightly raised above the ground along water body	Supplementary Data SD 4
Mobile Stalking	Slow and forward locomotion in a slightly crouched position, head low, eyes and ears focused on prey (movement in water)	Supplementary Data SD 6
Stationary Stalking	Eyes and ears focused while stationary along water-edge	Supplementary Data SD 7
Attempt to hunt/Attacking	Either jumping into water from sitting/standing position, or, charging towards and plunging front legs first into water	Supplementary Data SD 7
Eating prey	Prey is ingested by chewing and swallowing	Supplementary Data SD 8
Pheromone spray	Spray released backwards against vertical surface or object with vertically raised quivering tail while standing or in a squatting position on the ground, sometimes while walking along water body	Supplementary Data SD 7
Defecating	Faecal matter deposited on the ground while in a squatting position after thoroughly sniffing ground along water body	Supplementary Data SD 12

Self-grooming	Paw licked and wiped over head and body scratched using hind leg along water body	Supplementary Data SD 10
Sniffing	Air inhaled through nose with movement of whiskers	Supplementary Data SD 4
Swimming	Body propelled in water	Supplementary Data SD 11
Yawning	Mouth widely opened while inhaling and closed while exhaling	Supplementary Data SD 13

843

844

845 **Table 3.**—Proportion of time spent in performing each state as observed in deeper water,
846 shallow water and combined by Fishing Cat

Proportion of time spent (%)
{(Time spent in performing one state/Time spent in performing all states) X 100}

State	Proportion of time spent (%)		
	Deeper Water (n=180)	Shallow water (n=18)	Overall (n=198)
Mobile/Active Searching	32.79 (Mobile)	96.32 (Active)	35.38
Stationary Searching	51.65	—	49.75
Approaching	5.15	—	4.73
Stalking	4.05	3.68	4.29
Sniffing	4.63	—	4.25
Self-grooming	1.38	—	1.25
Swimming	0.38	—	0.35

847

848

849

850

851

852

853
854
855

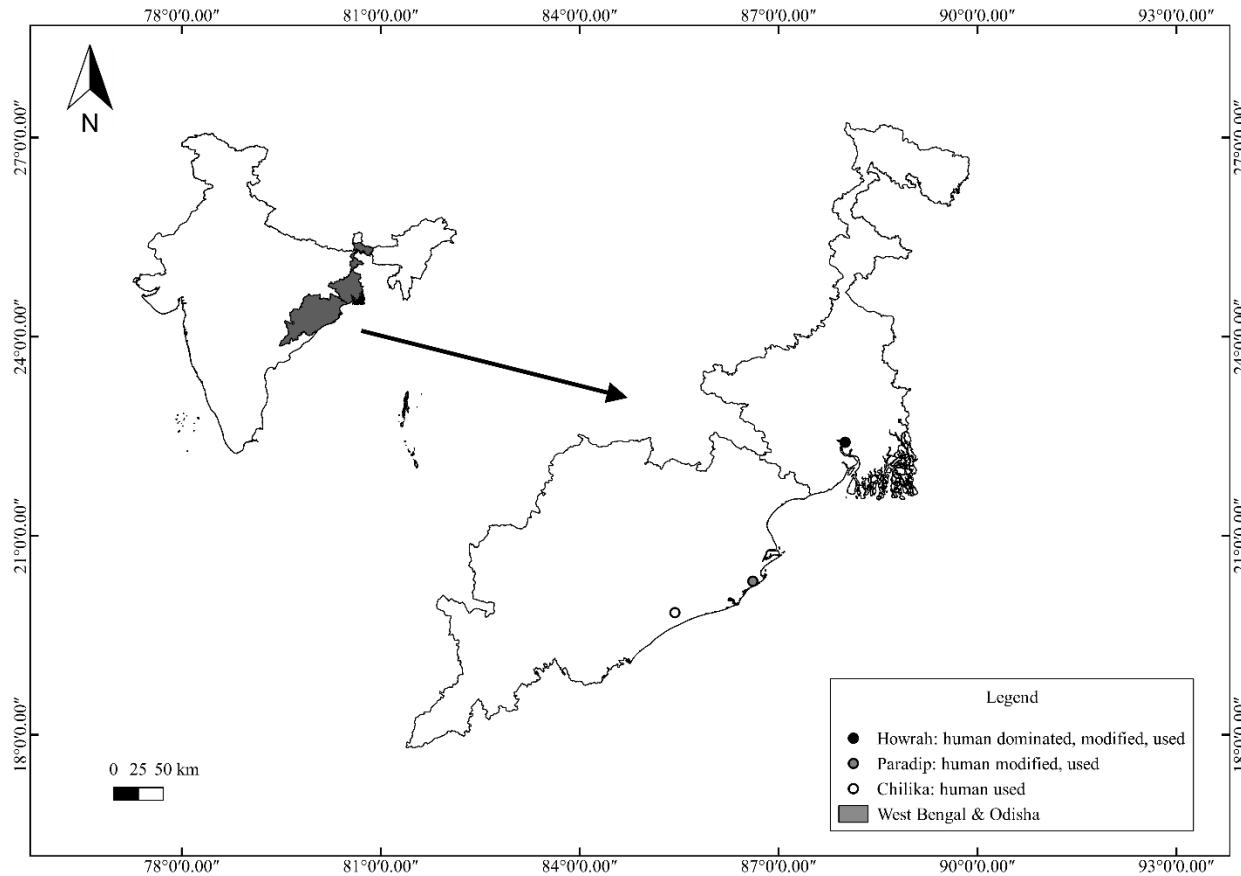
856

857

858

859

860 **Table 4.**—Frequency of occurrence of each event as observed in Fishing Cat



Event	Frequency of Occurrence
Attempt to hunt	11
Eating prey	3
Pheromone spray	9
Defecating	1
Yawning	1

861
862
863
864
865
866
867
868
869
870
871
872
873
874
875

876 **Fig. 1.**— Map showing study area sites (circled) across West Bengal and Odisha. Howrah,
877 Paradip and Chilika are marked with Black, grey and white circles respectively

878

879

880

881

882

883

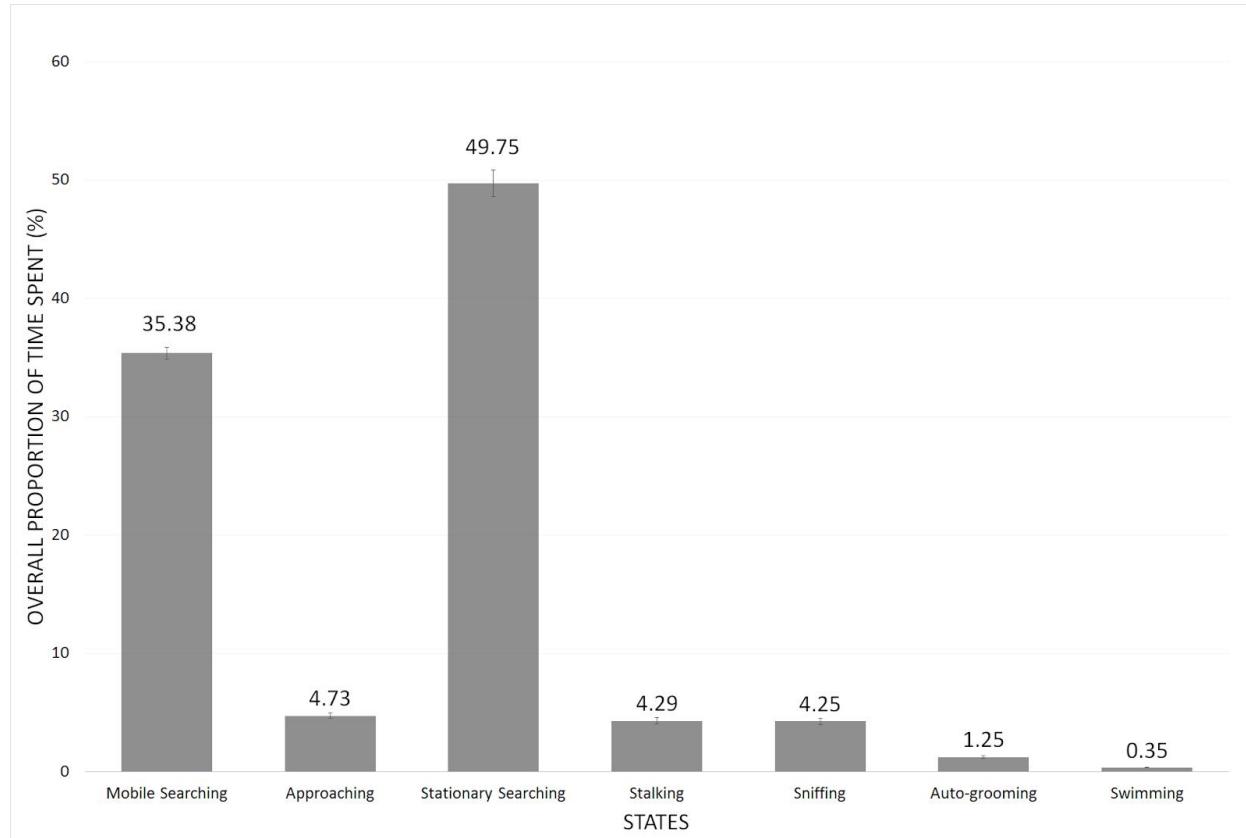
884

885

886

887

888


889

890

891

892

893 **Fig. 2.**—Proportion of time spent in performing each state (Mobile Searching, Approaching,
894 Stationary Searching, Stalking, Sniffing, Self-Grooming, Swimming) by Fishing Cat, where
895 error bars represent Standard Error (SE)

896

897

898

899

900

901

902

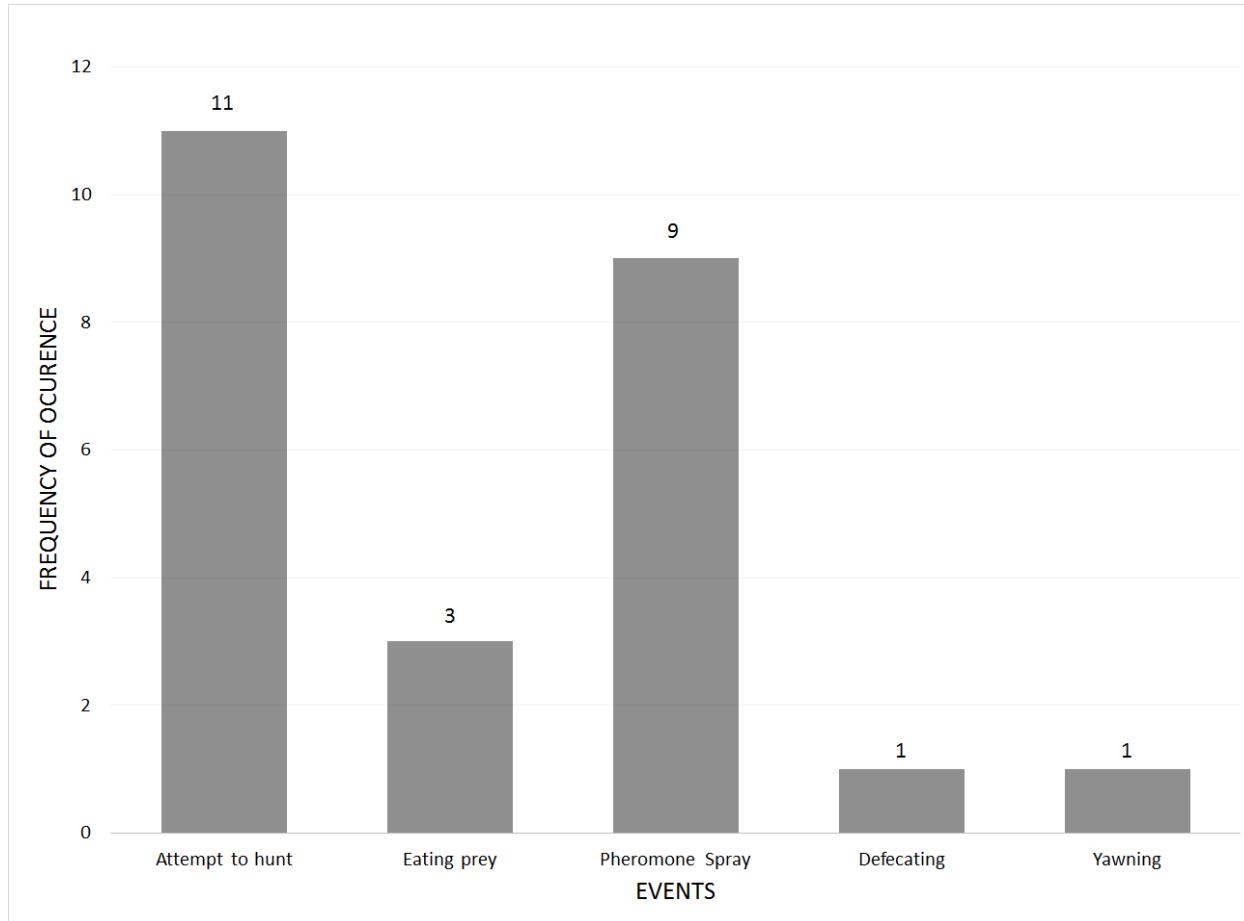
903

904

905

906

907


908

909

910

911 **Fig. 3.**—Frequency of occurrence of each state (Attempt to hunt, Eating prey, Pheromone
912 Spray, Defecating, Yawning) by Fishing Cat

913

914

915

916

917

918

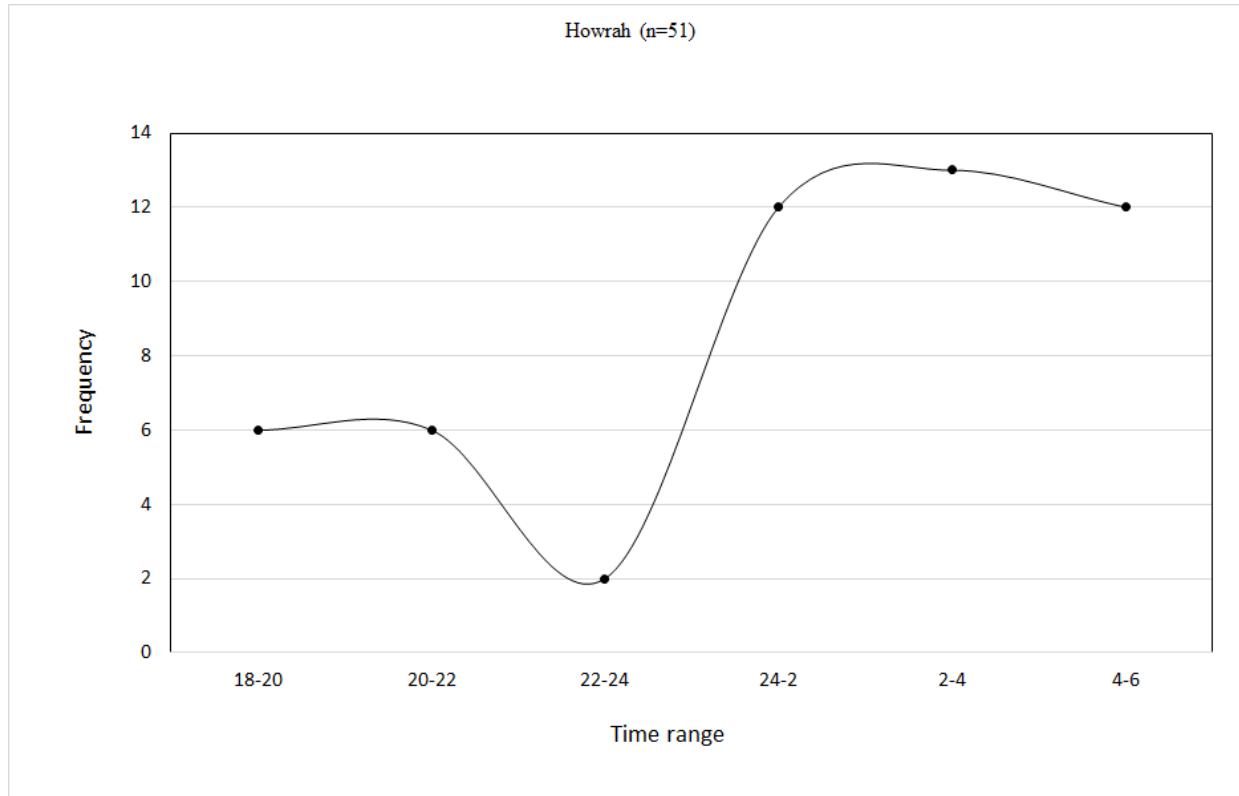
919

920

921

922

923


924

925

926

927

928 **Fig. 4a.**—Graph showing activity pattern of Fishing Cat in Howrah

929

930

931

932

933

934

935

936

937

938

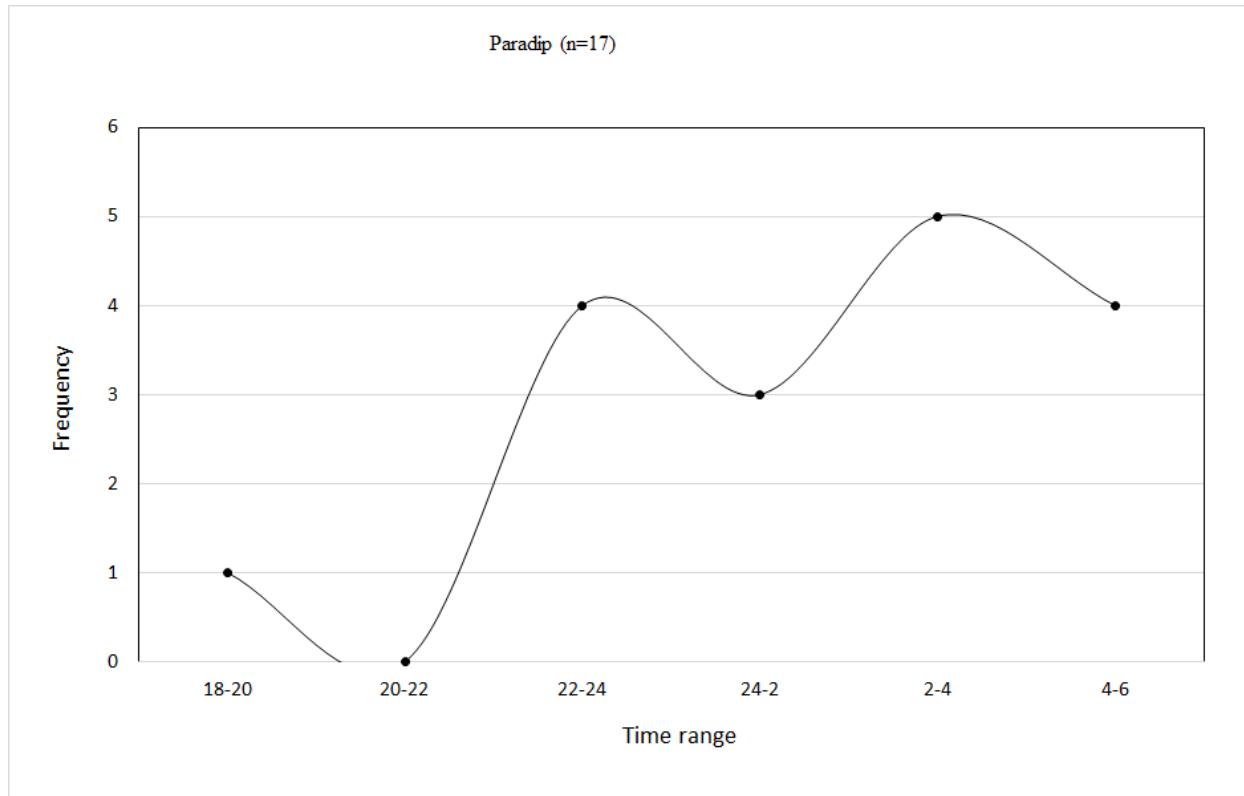
939

940

941

942

943


944

945

946

947 **Fig. 4b.**—Graph showing activity pattern of Fishing Cat in Paradip

948

949

950

951

952

953

954

955

956

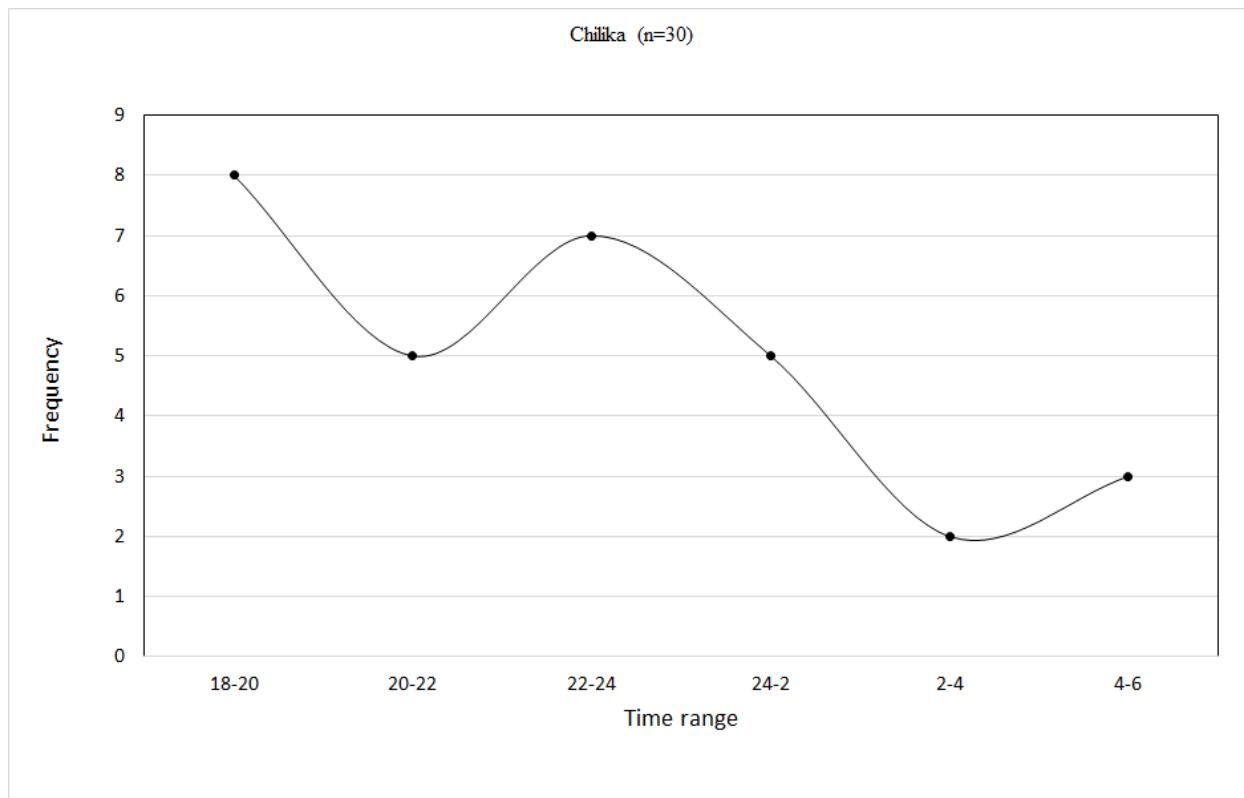
957

958

959

960

961


962

963

964

965

966 **Fig. 4c.**—Graph showing activity pattern of Fishing Cat in Chilika

967

968

969

970

971

972

973

974

975

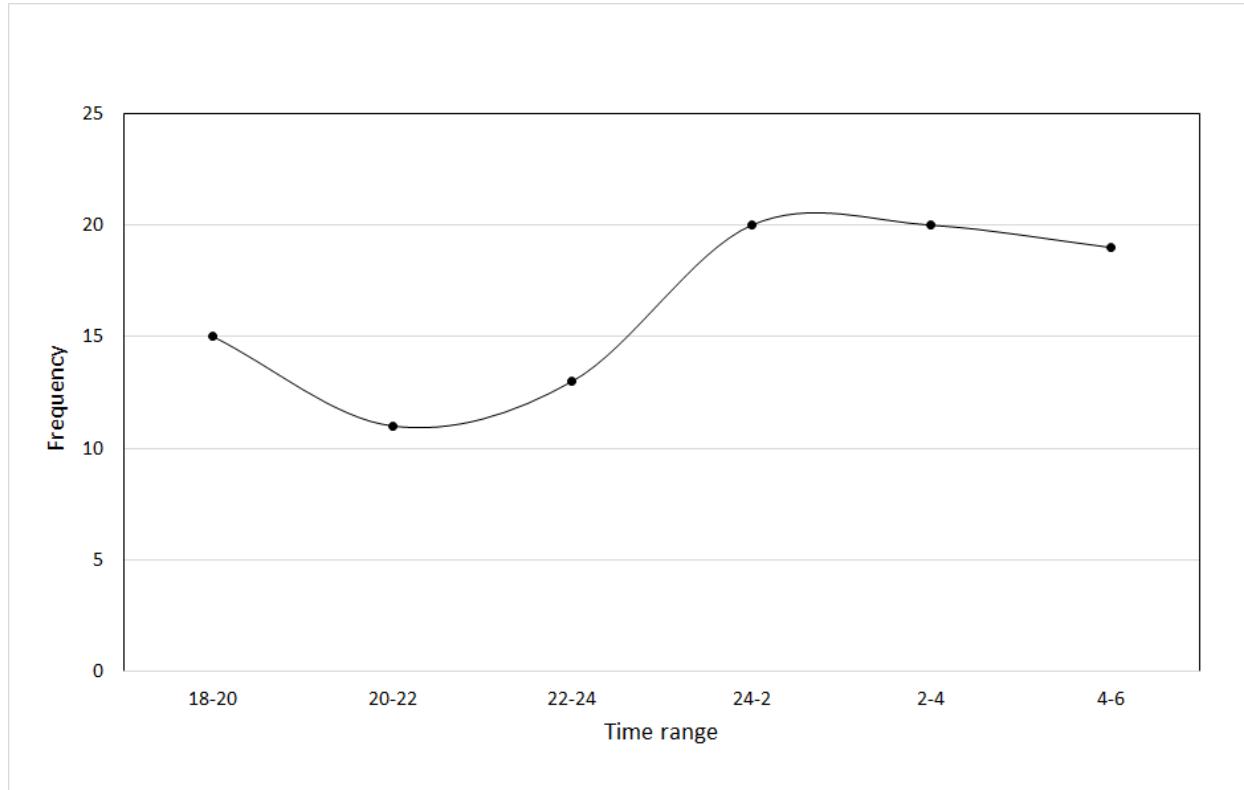
976

977

978

979

980


981

982

983

984

985 **Fig. 4d.**—Graph showing general activity pattern (Howrah, Paradip and Chilika combined) of
986 Fishing Cat outside Protected Area (n=98)

987

988